Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
1.
Nat Commun ; 14(1): 3774, 2023 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-37355669

RESUMO

Structural and electronic characterization of (Cp'3Cm)2(µ-4,4'-bpy) (Cp' = trimethylsilylcyclopentadienyl, 4,4'-bpy = 4,4'-bipyridine) is reported and provides a rare example of curium-carbon bonding. Cp'3Cm displays unexpectedly low energy emission that is quenched upon coordination by 4,4'-bipyridine. Electronic structure calculations on Cp'3Cm and (Cp'3Cm)2(µ-4,4'-bpy) rule out significant differences in the emissive state, rendering 4,4'-bipyridine as the primary quenching agent. Comparisons of (Cp'3Cm)2(µ-4,4'-bpy) with its samarium and gadolinium analogues reveal atypical bonding patterns and electronic features that offer insights into bonding between carbon with f-block metal ions. Here we show the structural characterization of a curium-carbon bond, in addition to the unique electronic properties never before observed in a curium compound.


Assuntos
Cúrio , Compostos Heterocíclicos , Análise Espectral , Carbono , Eletrônica
2.
Angew Chem Int Ed Engl ; 62(31): e202303669, 2023 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-37074219

RESUMO

Certain f-block elements-the lanthanides-have biological relevance in the context of methylotrophic bacteria. The respective strains incorporate these 4 f elements into the active site of one of their key metabolic enzymes, a lanthanide-dependent methanol dehydrogenase. In this study, we investigated whether actinides, the radioactive 5 f elements, can replace the essential 4 f elements in lanthanide-dependent bacterial metabolism. Growth studies with Methylacidiphilum fumariolicum SolV and the Methylobacterium extorquens AM1 ΔmxaF mutant demonstrate that americium and curium support growth in the absence of lanthanides. Moreover, strain SolV favors these actinides over late lanthanides when presented with a mixture of equal amounts of lanthanides together with americium and curium. Our combined in vivo and in vitro results establish that methylotrophic bacteria can utilize actinides instead of lanthanides to sustain their one-carbon metabolism if they possess the correct size and a +III oxidation state.


Assuntos
Elementos da Série dos Lantanídeos , Methylobacterium extorquens , Elementos da Série dos Lantanídeos/metabolismo , Amerício , Cúrio , Metanol/metabolismo , Methylobacterium extorquens/metabolismo , Proteínas de Bactérias/metabolismo
3.
Sci Total Environ ; 843: 156920, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-35753478

RESUMO

To assess a reliable safety case for future deep underground repositories for highly active nuclear waste the retention of radionuclides by the surrounding host rock must be understood comprehensively. Retention is influenced by several parameters such as mineral heterogeneity and surface roughness, as well as pore water chemistry (e.g., pH). However, the interplay between those parameters is not yet well understood. Therefore, we present a correlative spectromicroscopic approach to investigate sorption of the actinide Cm(III) on: 1) bulk K-feldspar crystals to determine the effect of surface roughness and pH (5.5 and 6.9) and 2) a large feldspar grain as part of a complex crystalline rock system to observe how sorption is influenced by the surrounding heterogeneous mineralogy. Our findings show that rougher K-feldspar surfaces exhibit increased Cm(III) uptake and stronger complexation. Similarly, increasing pH leads to higher surface loading and stronger Cm(III) binding to the surface. Within a heterogeneous mineralogical system sorption is further affected by neighboring mineral dissolution and competitive sorption between mineral phases such as mica and feldspar. The obtained results express a need for investigating relevant processes on multiple scales of dimension and complexity to better understand trivalent radionuclide retention by a potential repository host rock.


Assuntos
Cúrio , Compostos de Potássio , Silicatos de Alumínio , Radioisótopos
4.
Ecotoxicol Environ Saf ; 227: 112887, 2021 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-34649137

RESUMO

Trivalent actinides such as Cm(III) are able to strongly interact with microbes and especially with bacterial cell walls. However, detailed knowledge of the influence of different cell wall components is somewhat lacking. For this investigation, we studied the formation of aqueous Cm(III) complexes with cell wall components (e.g., lipopolysaccharide, peptidoglycan, and plasma membranes) using time-resolved laser-induced fluorescence spectroscopy (TRLFS). For all systems, two specific Cm(III) complexes with the biomacromolecules were observed as a function of pH. Specifically, Cm(III) was found to bind to phosphate and carboxyl groups present in the structure of the biomacromolecules. Stability constants and luminescence parameters of the specific Cm(III) complexes were determined and are presented. The pH of the surrounding aqueous solution, the plasma membrane concentration, and proteins included in the crude plasma membrane fraction were found to significantly impact the complexation of Cm(III). The Cm(III) luminescence spectra with plasma membranes, cell wall polymers, as well as Gram-negative (Sporomusa sp. MT-2.99 and Pseudomonas fluorescens) and Gram-positive (Paenibacillus sp. MT-2.2) bacteria will be explained by linear combination fitting using the investigated components.


Assuntos
Cúrio , Európio , Parede Celular , Luminescência , Espectrometria de Fluorescência
5.
J Am Chem Soc ; 143(38): 15769-15783, 2021 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-34542285

RESUMO

Anthropogenic radionuclides, including long-lived heavy actinides such as americium and curium, represent the primary long-term challenge for management of nuclear waste. The potential release of these wastes into the environment necessitates understanding their interactions with biogeochemical compounds present in nature. Here, we characterize the interactions between the heavy actinides, Am3+ and Cm3+, and the natural lanthanide-binding protein, lanmodulin (LanM). LanM is produced abundantly by methylotrophic bacteria, including Methylorubrum extorquens, that are widespread in the environment. We determine the first stability constant for an Am3+-protein complex (Am3LanM) and confirm the results with Cm3LanM, indicating a ∼5-fold higher affinity than that for lanthanides with most similar ionic radius, Nd3+ and Sm3+, and making LanM the strongest known heavy actinide-binding protein. The protein's high selectivity over 243Am's daughter nuclide 239Np enables lab-scale actinide-actinide separations as well as provides insight into potential protein-driven mobilization for these actinides in the environment. The luminescence properties of the Cm3+-LanM complex, and NMR studies of Gd3+-LanM, reveal that lanmodulin-bound f-elements possess two coordinated solvent molecules across a range of metal ionic radii. Finally, we show under a wide range of environmentally relevant conditions that lanmodulin effectively outcompetes desferrioxamine B, a hydroxamate siderophore previously proposed to be important in trivalent actinide mobility. These results suggest that natural lanthanide-binding proteins such as lanmodulin may play important roles in speciation and mobility of actinides in the environment; it also suggests that protein-based biotechnologies may provide a new frontier in actinide remediation, detection, and separations.


Assuntos
Amerício/química , Proteínas de Bactérias/química , Complexos de Coordenação/química , Cúrio/química , Íons/química , Elementos da Série dos Lantanídeos/química , Medições Luminescentes , Substâncias Macromoleculares , Methylobacterium extorquens/química , Conformação Molecular , Ligação Proteica , Relação Estrutura-Atividade
6.
J Hazard Mater ; 412: 125251, 2021 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-33556856

RESUMO

We have investigated the interaction of the actinide Cm(III) and its lanthanide homologue Eu(III) with cells of Brassica napus in suspension. This study combines biochemical techniques (plant cell response) with spectroscopic experiments to determine the chemical speciation of hazardous metals in contact with the plant cells. Experiments conducted over a period of 7 d showed that B. napus cells were able to bioassociate both potentially toxic metals in significant amounts up to 0.58 µmol Eu/gfresh cells and 1.82 µmol Cm/gfresh cells at 30 µM Eu(III) and 0.68 µM Cm(III), respectively. For Cm(III), a biosorption process could be identified as soon as 5 h post-exposure with 73 ± 4% of the Cm(III) bioassociated. Luminescence spectroscopy results based on UV and site-selective excitation confirmed the existence of three Cm(III)/Eu(III) [M(III)] species in both the supernatants and cells. The findings detailed herein support that M(III) coordinates to two kinds of carboxyl groups and phosphate groups.


Assuntos
Brassica napus , Cúrio , Európio , Luminescência , Células Vegetais
7.
Proteins ; 89(2): 193-206, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32892408

RESUMO

The iron carrier human serum transferrin (sTf) is known to transport other metals, including some actinides (An). Radiotoxic An are routinely involved in the nuclear fuel cycle and the possibility of their accidental exposure cannot be ruled out. Understanding An interaction with sTf assumes a greater significance for the development of safe and efficacious chelators for their removal from the blood stream. Here we report several 100 ns equilibrium MD simulations of Cm(III)- and Th(IV)-loaded sTf at various protonation states of the protein to explore the possibility of the two An ions release and speciation. The results demonstrate variation in protonation state of dilysine pair (K206 and K296) and the tyrosine (Y188) residue is necessary for the opening of Cm(III)-bound protein and the release of the ion. For the tetravalent thorium, protonation of dilysine pair suffices to cause conformational changes of protein. However, in none of the protonation states, Th(IV) releases from sTf because of its strong electrostatic interaction with D63 in the first shell of the sTf binding cleft. Analysis of hydrogen bond, water bridge, and the evaluation of potential of mean forces of the An ions' release from sTf, substantiate the differential behavior of Cm(III) and Th(IV) at endosomal pH. The results provide insight in the regulation of Cm(III) and Th(IV) bioavailability that may prove useful for effective design of their decorporating agents and as well may help the future design of radiotherapy based on tetravalent ions.


Assuntos
Cúrio/química , Simulação de Dinâmica Molecular , Tório/química , Transferrina/química , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Sítios de Ligação , Cúrio/metabolismo , Endossomos/metabolismo , Humanos , Ligação de Hidrogênio , Concentração de Íons de Hidrogênio , Lisina/química , Lisina/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Prótons , Eletricidade Estática , Termodinâmica , Tório/metabolismo , Transferrina/metabolismo , Tirosina/química , Tirosina/metabolismo
8.
J Environ Radioact ; 227: 106459, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33221564

RESUMO

The 238Pu, 239+240Pu, 241Am, 242Cm, 243+244Cm and 90Sr concentrations in seafloor surface sediments collected at three sampling stations off the Fukushima Daiichi Nuclear Power Plant (FDNPP) site during the period from 2012 to 2019 were determined to elucidate the impacts of the FDNPP accident onto their concentrations in coastal sediments and to discuss the sources of the measured radionuclides. The 239+240Pu, 241Pu and 241Am concentrations and 240Pu/239Pu atom ratios in a sediment core were also determined to allow comparison of their inventories between this study and previously reported values and to identify the Pu sources. The 238Pu, 239+240Pu, 241Am and 90Sr concentrations showed no remarkable temporal variations; no significant increases in concentrations after the FDNPP accident were observed; these concentrations were comfortably within the previously reported concentration range; and no detectable 242Cm and 243+244Cm amounts were observed in surface sediments. The observed 238Pu/239+240Pu activity ratios were approximately two orders of magnitudes lower than those for the damaged FDNPP reactor core inventories and the observed values in terrestrial samples after the accident. The 239+240Pu, 241Pu and 241Am inventories in the sediment core were 389 ± 5, 503 ± 33 and 214 ± 3 Bq m-2, respectively. The 239+240Pu inventory was about an order of magnitude greater than the expected cumulative deposition density of global fallout from atmospheric nuclear weapons testing due to an enhanced scavenging effect. The 240Pu/239Pu atom ratios in the sediment core ranged from 0.239 to 0.246 with a mean value of 0.242 ± 0.002; these ratios were clearly greater than the mean global fallout ratio of 0.18. The results for 238Pu/239+240Pu activity ratios and 240Pu/239Pu atom ratios reflected a mixture of global fallout and Pacific Proving Grounds (PPG) close-in fallout Pu rather than Fukushima accident-derived Pu. The sediment column inventory for 239+240Pu originating from the PPG close-in fallout was calculated as 166 Bq m-2, which corresponded to 43% of the total inventory. A significant amount of the PPG-derived Pu has been transported by ocean currents and then preferentially scavenged in the coastal waters of Japan.


Assuntos
Acidente Nuclear de Fukushima , Monitoramento de Radiação , Poluentes Radioativos da Água , Amerício/análise , Cúrio/análise , Japão , Centrais Nucleares , Plutônio/análise , Radioisótopos de Estrôncio , Poluentes Radioativos da Água/análise
9.
Environ Sci Technol ; 54(23): 15180-15190, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33185105

RESUMO

Microbial communities occurring in reference materials for artificial barriers (e.g., bentonites) in future deep geological repositories of radioactive waste can influence the migration behavior of radionuclides such as curium (CmIII). This study investigates the molecular interactions between CmIII and its inactive analogue europium (EuIII) with the indigenous bentonite bacterium Stenotrophomonas bentonitica at environmentally relevant concentrations. Potentiometric studies showed a remarkably high concentration of phosphates at the bacterial cell wall compared to other bacteria, revealing the great potential of S. bentonitica for metal binding. Infrared spectroscopy (ATR-FTIR) and X-ray photoelectron spectroscopy (XPS) confirmed the role of phosphates and carboxylate groups from the cell envelope in the bioassociation of EuIII. Additionally, time-resolved laser-induced fluorescence spectroscopy (TRLFS) identified phosphoryl and carboxyl groups from bacterial envelopes, among other released complexing agents, to be involved in the EuIII and CmIII coordination. The ability of this bacterium to form a biofilm at the surface of bentonites allows them to immobilize trivalent lanthanide and actinides in the environment.


Assuntos
Resíduos Radioativos , Cúrio , Európio , Stenotrophomonas
10.
J Phys Chem Lett ; 11(15): 6063-6067, 2020 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-32635727

RESUMO

Two-photon-excited fluorescence spectroscopy is a powerful tool to study the structural and electronic properties of optically active complexes and molecules. Although numerous lanthanide complexes have been characterized by two-photon-excited fluorescence in solution, this report is the first to apply such a technique to actinide compounds. Contrasting with previous observations in lanthanides, we demonstrate that the two-photon absorption properties of the complexes significantly depend on the metal (4f vs 5f), with Cm(III) complexes showing significantly higher two-photon absorption cross sections than lanthanide analogues and up to 200-fold stronger emission intensities. These results are consistent with electronic and structural differences between the lanthanide and actinide systems studied. Hence, the described methodology can provide valuable insights into the interactions between f-elements and ligands, along with promising prospects on the characterization of scarce compounds.


Assuntos
Complexos de Coordenação/química , Cúrio/química , Corantes Fluorescentes/química , Catecolaminas/química , Transporte de Elétrons , Enterobactina/química , Európio/química , Fluoresceína/química , Ligantes , Estrutura Molecular , Fótons , Piridonas/química , Espectrometria de Fluorescência , Térbio/química
11.
Colloids Surf B Biointerfaces ; 190: 110950, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32172166

RESUMO

Trivalent actinides such as Cm(III) are able to occupy natural Ca(II) binding sites in biological systems. For this investigation, we studied the formation of aqueous Cm(III) complexes with S-layer proteins by time-resolved laser-induced fluorescence spectroscopy (TRLFS). S-layer proteins serve as protective biointerfaces in bacteria and archaea against the surrounding solution. Experimental assays were performed at a fixed total concentration of Cm(III) (0.88 µM) using an S-layer protein (5 g/L / 39.6 µM) at varying pH levels (2.0-9.0), as well as several types of S-layer proteins of L. sphaericus JG-A12. Based on resulting luminescence spectra and lifetime data, specific and unspecific binding sites could be distinguished. Notably, specific Cm(III) binding to S-layer proteins was confirmed by the appearance of a sharp emission band at 602.5 nm, combined with a long lifetime of 310 µs. The high affinity of these specific binding sites was also verified using competing EDTA, wherein only a high EDTA concentration (40 µM) could efficiently remove Cm(III) from S-layer proteins.


Assuntos
Bacillaceae/química , Cúrio/química , Glicoproteínas de Membrana/química , Tamanho da Partícula , Propriedades de Superfície
12.
J Am Chem Soc ; 141(49): 19404-19414, 2019 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-31794205

RESUMO

A major chemical challenge facing implementation of 225Ac in targeted alpha therapy-an emerging technology that has potential for treatment of disease-is identifying an 225Ac chelator that is compatible with in vivo applications. It is unclear how to tailor a chelator for Ac binding because Ac coordination chemistry is poorly defined. Most Ac chemistry is inferred from radiochemical experiments carried out on microscopic scales. Of the few Ac compounds that have been characterized spectroscopically, success has only been reported for simple inorganic ligands. Toward advancing understanding in Ac chelation chemistry, we have developed a method for characterizing Ac complexes that contain highly complex chelating agents using small quantities (µg) of 227Ac. We successfully characterized the chelation of Ac3+ by DOTP8- using EXAFS, NMR, and DFT techniques. To develop confidence and credibility in the Ac results, comparisons with +3 cations (Am, Cm, and La) that could be handled on the mg scale were carried out. We discovered that all M3+ cations (M = Ac, Am, Cm, La) were completely encapsulated within the binding pocket of the DOTP8- macrocycle. The computational results highlighted the stability of the M(DOTP)5- complexes.


Assuntos
Actínio/química , Amerício/química , Quelantes/química , Complexos de Coordenação/síntese química , Cúrio/química , Lantânio/química , Compostos Organofosforados/química , Compostos Radiofarmacêuticos/síntese química , Complexos de Coordenação/química , Ligantes , Estrutura Molecular , Compostos Radiofarmacêuticos/química
13.
Phys Chem Chem Phys ; 21(38): 21213-21222, 2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31418759

RESUMO

Trivalent actinides and their lanthanide homologues are being scrutinized for their potential health risk when ingested as a result of a range of industrial activities such as mining. Importantly, these ions are known to exhibit high affinity towards calmodulin (CaM). In case of their inadvertent uptake, the holoproteins that are occupied by these cations may block signal transduction pathways or increase the concentration of these ions in intact cells, which could lead to accumulation in human organs. Accordingly, this investigation employed spectroscopy, computational chemistry, calorimetry, and biochemistry to study the results of metal ion substitution on the protein structure, enzymatic activity and chemo- and cytotoxicity of An3+/Ln3+ ions. As will be demonstrated herein, our data confirm the higher affinity of Cm3+ and Eu3+ compared to Ca2+ to all 4 binding sites of CaM, with one site differing from the remaining three. This higher-affinity site will complex Eu3+ in an exothermic fashion; in contrast, ion binding to the three lower-affinity EF-hands was found to be endothermic. The overall endothermic binding process is ascribed to the loss of the hydration shells of the trivalent ions upon protein binding. These findings are supported by extensive quantum chemical calculations of full holo-CaM, which were performed at the MP2 level using the fragment molecular orbital method. The exceptional binding site (EF-hand 3) features fewer negatively charged residues compared to the other EF-hands, thereby allowing Eu3+ and Cm3+ to carry one or two additional waters compared to Ca2+-CaM, while also causing the structure of Cm3+/Eu3+-CaM to become slightly disordered. Moreover, the enzymatic activity decreases somewhat in comparison to Ca2+-CaM. By utilizing a combination of techniques, we were able to generate a comprehensive picture of the CaM-actinide/lanthanide system from the molecular level to its functional impact. Such knowledge could also be applied to other metal-binding proteins.


Assuntos
Calmodulina/química , Calmodulina/metabolismo , Cúrio/química , Európio/química , Sítios de Ligação , Cálcio/química , Cátions , Simulação de Dinâmica Molecular , Conformação Proteica , Água
14.
J Hazard Mater ; 370: 156-163, 2019 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-30940356

RESUMO

This work describes the molecular characterization of the interaction mechanism of a bentonite yeast isolate, Rhodotorula mucilaginosa BII-R8, with curium(III) as representative of trivalent actinides and europium(III) used as inactive analogue of Cm(III). A multidisciplinary approach combining spectroscopy, microscopy and flow cytometry was applied. Time-Resolved Laser Induced Fluorescence Spectroscopy (TRLFS) analyses demonstrated that the biosorption of Cm(III) is a reversible and pH-dependent process for R. mucilaginosa BII-R8 cells. Two Cm(III)-R. mucilaginosa BII-R8 species were identified having emission maxima at 599.6 and 601.5 nm. They were assigned to Cm(III) species bound to phosphoryl and carboxyl sites from the yeast cell, respectively. Phosphate groups were involved in the sorption of this actinide, as demonstrated by the Eu(III)-phosphate accumulates at the cell membrane shown by microscopy. In addition, cell viability and metabolic potential were assessed to determine the negative effect of Eu(III) in the yeast cells. The results obtained in this work showed that the interaction of Cm(III) with the yeast R. mucilaginosa BII-R8 cells at circumneutral and alkaline pH values will make this radionuclide more mobile to reach the biosphere. Therefore, geochemical conditions in the bentonite engineering barrier need to be carefully adjusted for the safe deep geological disposal of radioactive wastes.


Assuntos
Cúrio/química , Poluentes Radioativos/química , Rhodotorula/química , Adsorção , Bentonita , Európio/química , Concentração de Íons de Hidrogênio , Resíduos Radioativos
15.
Nanoscale ; 11(16): 7609-7612, 2019 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-30969284

RESUMO

We present the first report of ligand-sensitized, actinide luminescence in a lanthanide nanoparticle host. Amplified luminescence of 248Cm3+ doped in a NaGdF4 lattice is achieved through optical pumping of a surface-localized metal chelator, 3,4,3-LI(1,2-HOPO), capable of sensitizing Cm3+ excited states. The data suggest the possibility of using such materials in theranostic applications, with a ligand-sensitized actinide or radio-lanthanide serving the dual roles of a nuclear decay source for radiotherapeutics, and as a luminescent center or energy transfer conduit to another emissive metal ion, for biological imaging.


Assuntos
Cúrio/química , Nanopartículas/química , Quelantes/química , Ligantes , Medições Luminescentes , Piridonas/química
16.
J Phys Chem B ; 123(13): 2729-2744, 2019 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-30864809

RESUMO

Human serum transferrin (sTf) can also function as a noniron metal transporter since only 30% of it is typically saturated with a ferric ion. While this function of sTf can be fruitfully utilized for targeted delivery of certain metal therapeutics, it also runs the risk of trafficking the lethal radionuclides into cells. A large number of actinide (An) ions are known to bind to the iron sites of sTf although molecular-level understanding of their binding is unclear. Understanding the radionuclide interaction with sTf is a primary step toward future design of their decorporating agents since irrespective of the means of contamination, the radionuclides are absorbed and transported by blood before depositing into target organs. Here, we report an extensive multiscale modeling approach of two An (curium(III) and thorium(IV)) ions' binding with sTf at serum physiological pH. We find that sTf binds both the heavy ions in a closed conformation with carbonate as synergistic anions and the An-loaded sTf maintains its closed conformation even after 100 ns of equilibrium molecular dynamics (MD) simulations. MD simulations are performed in a polarizable water environment, which also incorporates electronic continuum corrections for ions via charge rescaling. The molecular details of the An coordination and An exchange free energies with iron in the interdomain cleft of the protein are evaluated through a combination of quantum mechanical (QM) and MD studies. In line with reported experimental observations, well-tempered metadynamics results of the ions' binding energetics show that An-sTf complexes are less stable than Fe-sTf. Additionally, curium(III) is found to bind more weakly than thorium(IV). The latter result might suggest relative attenuation of thorium(IV) cytotoxicity when compared with curium(III).


Assuntos
Cúrio/química , Simulação de Dinâmica Molecular , Teoria Quântica , Tório/química , Transferrina/química , Sítios de Ligação , Humanos
17.
Environ Sci Pollut Res Int ; 26(9): 9352-9364, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30721439

RESUMO

In addition to geological, geochemical, and geophysical aspects, also, microbial aspects have to be taken into account when considering the final storage of high-level radioactive waste in a deep geological repository. Rock salt is a potential host rock formation for such a repository. One indigenous microorganism, that is, common in rock salt, is the halophilic archaeon Halobacterium noricense DSM15987T, which was used in our study to investigate its interactions with the trivalent actinide curium and its inactive analogue europium as a function of time and concentration. Time-resolved laser-induced fluorescence spectroscopy was applied to characterize formed species in the micromolar europium concentration range. An extended evaluation of the data with parallel factor analysis revealed the association of Eu(III) to a phosphate compound released by the cells (F2/F1 ratio, 2.50) and a solid phosphate species (F2/F1 ratio, 1.80). The association with an aqueous phosphate species and a solid phosphate species was proven with site-selective TRLFS. Experiments with Cm(III) in the nanomolar concentration range showed a time- and pCH+-dependent species distribution. These species were characterized by red-shifted emission maxima, 600-602 nm, in comparison to the free Cm(III) aqueous ion, 593.8 nm. After 24 h, 40% of the luminescence intensity was measured on the cells corresponding to 0.18 µg Cm(III)/gDBM. Our results demonstrate that Halobacterium noricense DSM15987T interacts with Eu(III) by the formation of phosphate species, whereas for Cm(III), a complexation with carboxylic functional groups was also observed.


Assuntos
Archaea/fisiologia , Cúrio/metabolismo , Európio/metabolismo , Resíduos Radioativos , Archaea/metabolismo , Európio/química , Lasers , Tolerância ao Sal , Espectrometria de Fluorescência/métodos
18.
J Inorg Biochem ; 192: 45-51, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30594865

RESUMO

The complexation of Cm(III) with human serum albumin (HSA) was investigated using time-resolved laser fluorescence spectroscopy (TRLFS). The Cm(III) HSA species is dominating the speciation between pH 7.0 and 9.3. The first coordination sphere is composed by three to four H2O molecules and five to six coordinating ligands from the protein. For the complex formation at pH 8.0 a conditional stability constant of logK = 6.16 ±â€¯0.50 was determined. Furthermore, information on the Cm(III) HSA binding site were obtained. With increasing Cu(II) concentration the Cm(III) HSA complexation is suppressed whereas the addition of Zn(II) has no effect. This points to the complexation of Cm(III) at the N-terminal binding site (NTS) which is the primary Cu(II) binding site. NMR experiments with Cu(II), Eu(III) and Am(III) HSA show a decrease of the peak assigned to the His C2 proton of His 3, which is part of the NTS, with increasing metal ion concentration. This confirms the complexation of Eu(III) and Am(III) at the Cu(II) binding site NTS. The results presented in this study contribute to a better understanding of relevant biochemical reactions of incorporated actinides.


Assuntos
Cúrio/química , Ressonância Magnética Nuclear Biomolecular , Albumina Sérica Humana/química , Humanos , Espectrometria de Fluorescência
19.
Dalton Trans ; 47(41): 14612-14620, 2018 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-30270390

RESUMO

The coordination environment of Cm(iii) bound at the Fe(iii) binding sites of transferrin was investigated using a combined experimental and theoretical approach. Complexation studies with two hTf/2N single point mutants, Y95F (Tyr → Phe) and H249A (His → Ala) were performed. The substitution of Tyr 95 by the non-complexing Phe prevents Cm(iii) from forming of a strong, multidentate complex with the mutant. In contrast, with the H249A mutant Cm(iii) complexation at the binding site still occurs although a slightly higher pH is required to form the complex. This elucidates that His plays a minor role and is not a key ligand like Tyr 95. MD/DFT calculations of Cm(iii) bound at the N-terminal binding site provide further structural information. All coordinating groups present in the Fe(iii) transferrin complex are also found for Cm(iii), i.e. Asp 63, Tyr 95, Tyr 188 and His 249. Additionally, two water molecules, one monodentate and one bidentate carbonate ion complete the coordination environment. This structure of the Cm(iii) hTf/2N complex is confirmed by vibronic sideband spectroscopy which allows an identification of the directly coordinating groups. The results underline an involvement of Asp 63, Tyr 95, Tyr 188 and His 249 as well as carbonate in Cm(iii) coordination at the transferrin Fe(iii) binding site.


Assuntos
Cúrio/química , Transferrina/química , Humanos , Modelos Moleculares , Mutação Puntual , Teoria Quântica , Transferrina/genética
20.
J Inorg Biochem ; 175: 248-258, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28802224

RESUMO

In case radioactive materials are released into the environment, their incorporation into our digestive system would be a significant concern. Trivalent f-elements, i.e., trivalent actinides and lanthanides, could potentially represent a serious health risk due to their chemo- and radiotoxicity, nevertheless the biochemical behavior of these elements are mostly unknown even to date. This study, therefore, focuses on the chemical speciation of trivalent f-elements in the human gastrointestinal tract. To simulate the digestive system artificial digestive juices (saliva, gastric juice, pancreatic juice and bile fluid) were prepared. The chemical speciation of lanthanides (as Eu(III)) and actinides (as Cm(III)) was determined experimentally by time-resolved laser-induced fluorescence spectroscopy (TRLFS) and the results were compared with thermodynamic modeling. The results indicate a dominant inorganic species with phosphate/carbonate in the mouth, while the aquo ion is predominantly formed with a minor contribution of the enzyme pepsin in the stomach. In the intestinal tract the most significant species are with the protein mucin. We demonstrated the first experimental results on the chemical speciation of trivalent f-elements in the digestive media by TRLFS. The results highlight a significant gap in chemical speciation between experiments and thermodynamic modeling due to the limited availability of thermodynamic stability constants particularly for organic species. Chemical speciation strongly influences the in vivo behavior of metal ions. Therefore, the results of this speciation study will help to enhance the assessment of health risks and to improve decorporation strategies after ingestion of these (radio-)toxic heavy metal ions.


Assuntos
Cúrio/química , Európio/química , Trato Gastrointestinal/química , Modelos Químicos , Animais , Bovinos , Humanos , Espectrometria de Fluorescência , Termodinâmica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...